2024香港最具教育競爭力中學/小學/幼稚園50強龍虎榜
2024香港最具教育競爭力中學/小學/幼稚園排名指南
最近十一年香港最具教育競爭力中學/小學/幼稚園50強完整版榜單:
2024202320222021/202019201820172016201520142013
教育競爭力評比體系說明
校風評比體系說明
服务全球华人的中英文書籍網上書店
您的購物車是空的

Design of Highway Bridges: An LRFD Approach [精裝] (公路橋設計)

  • 作者:Richard M. Barker (理查德‧巴克) Jay A. Puckett (傑伊‧A‧帕克特) 著
  • 出版社: John Wiley & Sons
  • 出版時間:2007-01-05
  • 版次:2
  • 商品編號: 19003263

    頁數:1032

    裝幀:精裝


HK$1,656.80 (速遞費用須知)
購買額滿HK$158免運費
免郵費優惠僅限香港、澳门、
台灣及中國大陸

購買數量:

內容簡介


This is the up-to-date guide to applying theory and specifications to real-world highway bridge design. Design of Highway Bridges, Second Edition offers detailed coverage of engineering basics for the design of short - and medium-span bridges. Based on the American Association of State Highway and Transportation Officials (AASHTO) LRFD Bridge Design Specifications, it is an excellent engineering resource. This updated edition features: expanded coverage of structural analysis, including axle and lane loads, along with new numerical analytic methods and approaches; dozens of worked problems, primarily in Customary U.S. units, that allow techniques to be applied to real-world problems and design specifications; revised AASHTO steel bridge design guidelines that reflect the simplified approach for plate girder bridges; the latest information on concrete bridges, including new minimum reinforcement requirements, and unbonded tendon stress at ultimate and losses for prestressed concrete girders; information on key bridge types, selection principles, and aesthetic issues; problems and selected references for further study; and more. From gaining quick familiarity with the AASHTO LRFD specifications to seeking broader guidance on highway bridge design - this is the one-stop, ready reference that puts information at your fingertips.

 

目錄 Table of Contents

Preface. 

Preface to the First Edition. 

1 Introduction to Bridge Engineering. 

1.1 A Bridge Is Key Element in a Transportation System. 

1.2 Bridge Engineering in the United States. 

1.2.1 Stone Arch Bridges. 

1.2.2 Wooden Bridges. 

1.2.3 Metal Truss Bridges. 

1.2.4 Suspension Bridges. 

1.2.5 Metal Arch Bridges. 

1.2.6 Reinforced Concrete Bridges. 

1.2.7 Girder Bridges. 

1.2.8 Closing Remarks. 

1.3 Bridge Specifications. 

1.4 Implication of Bridge Failures on Practice. 

1.4.1 Silver Bridge, Point Pleasant, West Virginia, December 15, 1967. 

1.4.2 I-5 and I-210 Interchange, San Fernando, California, February 9, 1971. 

1.4.3 Sunshine Skyway, Tampa Bay, Florida, May 9, 1980. 

1.4.4 Mianus River Bridge, Greenwich, Connecticut, June 28, 1983. 

1.4.5 Schoharie Creek Bridge, Amsterdam, New York, April 5, 1987. 

1.4.6 Cypress Viaduct, Loma Prieta Earthquake, October 17, 1989. 

1.5 Failures during Construction. 

1.6 Bridge Engineer - Planner, Architect, Designer, Constructor, and Facility Manager. 

References. 

Problems. 

2 Aesthetics and Bridge Types. 

2.1 Introduction. 

2.2 Nature of the Structural Design Process. 

2.2.1 Description and Justification. 

2.2.2 Public and Personal Knowledge. 

2.2.3 Regulation. 

2.2.4 Design Process. 

2.3 Aesthetics in Bridge Design. 

2.3.1 Definition of Aesthetics. 

2.3.2 Qualities of Aesthetic Design. 

2.3.3 Practical Guidelines for Medium- and Short-Span Bridges. 

2.3.4 Computer Modeling. 

2.3.5 Web References. 

2.3.6 Closing Remarks on Aesthetics. 

2.4 Types of Bridges. 

2.4.1 Main Structure below the Deck Line. 

2.4.2 Main Structure above the Deck Line. 

2.4.3 Main Structure Coincides with the Deck Line. 

2.4.4 Closing Remarks on Bridge Types. 

2.5 Selection of Bridge Type. 

2.5.1 Factors to Be Considered. 

2.5.2 Bridge Types Used for Different Span Lengths. 

2.5.3 Closing Remarks on Selection of Bridge Types. 

References. 

Problems. 

3 General Design Considerations. 

3.1 Introduction. 

3.2 Development of Design Procedures. 

3.2.1 Allowable Stress Design. 

3.2.2 Variability of Loads. 

3.2.3 Shortcomings of Allowable Stress Design. 

3.2.4 Load and Resistance Factor Design. 

3.3 Design Limit States. 

3.3.1 General. 

3.3.2 Service Limit State. 

3.3.3 Fatigue and Fracture Limit State. 

3.3.4 Strength Limit State. 

3.3.5 Extreme Event Limit State. 

3.4 Principles of Probabilistic Design. 

3.4.1 Frequency Distribution and Mean Value. 

3.4.2 Standard Deviation. 

3.4.3 Probability Density Functions. 

3.4.4 Bias Factor. 

3.4.5 Coefficient of Variation. 

3.4.6 Probability of Failure. 

3.4.7 Safety Index β. 

3.5 Calibration of LRFD Code. 

3.5.1 Overview of the Calibration Process. 

3.5.2 Calibration Using Reliability Theory. 

3.5.3 Calibration by Fitting with ASD. 

3.6 Geometric Design Considerations. 

3.6.1 Roadway Widths. 

3.6.2 Vertical Clearances. 

3.6.3 Interchanges. 

3.7 Closing Remarks. 

References. 

Problems. 

4 Loads. 

4.1 Introduction. 

4.2 Gravity Loads. 

4.2.1 Permanent Loads. 

4.2.2 Transient Loads. 

4.3 Lateral Loads. 

4.3.1 Fluid Forces. 

4.3.2 Seismic Loads. 

4.3.3 Ice Forces. 

4.4 Forces due to Deformations. 

4.4.1 Temperature. 

4.4.2 Creep and Shrinkage. 

4.4.3 Settlement. 

4.5 Collision Loads. 

4.5.1 Vessel Collision. 

4.5.2 Rail Collision. 

4.5.3 Vehicle Collision. 

4.6 Summary. 

References. 

Problems. 

5 Influence Functions and Girder-Line Analysis. 

5.1 Introduction. 

5.2 Definition. 

5.3 Statically Determinate Beams. 

5.3.1 Concentrated Loads. 

5.3.2 Uniform Loads. 

5.4 Muller–Breslau Principle. 

5.4.1 Betti's Theorem. 

5.4.2 Theory of Muller–Breslau Principle. 

5.4.3 Qualitative Influence Functions. 

5.5 Statically Indeterminate Beams. 

5.5.1 Integration of Influence Functions. 

5.5.2 Relationship between Influence Functions. 

5.5.3 Muller–Breslau Principle for End Moments. 

5.5.4 Automation by Matrix Structural Analysis. 

5.6 Normalized Influence Functions. 

5.7 AASHTO Vehicle Loads. 

5.8 Influence Surfaces. 

5.9 Summary. 

References. 

Problems. 

6 System Analysis. 

6.1 Introduction. 

6.2 Safety of Methods. 

6.2.1 Equilibrium for Safe Design. 

6.2.2 Stress Reversal and Residual Stress. 

6.2.3 Repetitive Overloads. 

6.2.4 Fatigue and Serviceability. 

6.3 Gravity Load Analysis. 

6.3.1 Slab–Girder Bridges. 

6.3.2 Slab Bridges. 

6.3.3 Slabs in Slab–Girder Bridges. 

6.3.4 Box-Girder Bridges. 

6.4 Effects of Temperature, Shrinkage, and Prestress. 

6.4.1 General. 

6.4.2 Prestressing. 

6.4.3 Temperature Effects. 

6.4.4 Shrinkage and Creep. 

6.5 Lateral Load Analysis. 

6.5.1 Wind Loads. 

6.5.2 Seismic Load Analysis. 

6.6 Summary. 

References. 

7 Concrete Bridges. 

7.1 Introduction. 

7.2 Reinforced and Prestressed Concrete Material Response. 

7.3 Constituents of Fresh Concrete. 

7.4 Properties of Hardened Concrete. 

7.4.1 Short-Term Properties of Concrete. 

7.4.2 Long-Term Properties of Concrete. 

7.5 Properties of Steel Reinforcement. 

7.5.1 Nonprestressed Steel Reinforcement. 

7.5.2 Prestressing Steel. 

7.6 Limit States. 

7.6.1 Service Limit State. 

7.6.2 Fatigue Limit State. 

7.6.3 Strength Limit State. 

7.6.4 Extreme Event Limit State. 

7.7 Flexural Strength of Reinforced Concrete Members. 

7.7.1 Depth to Neutral Axis for Beams with Bonded Tendons. 

7.7.2 Depth to Neutral Axis for Beams with Unbonded Tendons. 

7.7.3 Nominal Flexural Strength. 

7.7.4 Ductility and Maximum Tensile Reinforcement. 

7.7.5 Minimum Tensile Reinforcement. 

7.7.6 Loss of Prestress. 

7.8 Shear Strength of Reinforced Concrete Members. 

7.8.1 Variable-Angle Truss Model. 

7.8.2 Modified Compression Field Theory. 

7.8.3 Shear Design Using Modified Compression Field Theory. 

7.9 Concrete Barrier Strength. 

7.9.1 Strength of Uniform Thickness Barrier Wall. 

7.9.2 Strength of Variable Thickness Barrier Wall. 

7.9.3 Crash Testing of Barriers. 

7.10 Example Problems. 

7.10.1 Concrete Deck Design. 

7.10.2 Solid Slab Bridge Design. 

7.10.3 T-Beam Bridge Design. 

7.10.4 Prestressed Girder Bridge. 

References. 

Problems. 

8 Steel Bridges. 

8.1 Introduction. 

8.2 Material Properties. 

8.2.1 Steelmaking Process: Traditional. 

8.2.2 Steelmaking Precess: Mini Mills. 

8.2.3 Steelmaking Process: Environmental Considerations. 

8.2.4 Production of Finished Products. 

8.2.5 Residual Stresses. 

8.2.6 Heat Treatments. 

8.2.7 Classification of Structural Steels. 

8.2.8 Effects of Repeated Stress (Fatigue). 

8.2.9 Brittle Fracture Considerations. 

8.3 Limit States. 

8.3.1 Service Limit State. 

8.3.2 Fatigue and Fracture Limit State. 

8.3.3 Strength Limit States. 

8.3.4 Extreme Event Limit State. 

8.4 General Design Requirements. 

8.4.1 Effective Length of Span. 

8.4.2 Dead-Load Camber. 

8.4.3 Minimum Thickness of Steel. 

8.4.4 Diaphragms and Cross Frames. 

8.4.5 Lateral Bracing. 

8.5 Tension Members. 

8.5.1 Types of Connections. 

8.5.2 Tensile Resistance. 

8.5.3 Strength of Connections for Tensile Members. 

8.6 Compression Members. 

8.6.1 Column Stability Concepts. 

8.6.2 Inelastic Buckling Concepts. 

8.6.3 Compressive Resistance. 

8.6.4 Connections for Compression Members. 

8.7 I-Sections in Flexure. 

8.7.1 General. 

8.7.2 Yield Moment and Plastic Moment. 

8.7.3 Stability Related to Flexural Resistance. 

8.7.4 Limit States. 

8.7.5 Summary of I-Sections in Flexure. 

8.7.6 Closing Remarks on I-Sections in Flexure. 

8.8 Shear Resistance of I-Sections. 

8.8.1 Beam Action Shear Resistance. 

8.8.2 Tension Field Action Shear Resistance. 

8.8.3 Combined Shear Resistance. 

8.8.4 Shear Resistance of Unstiffened Webs. 

8.9 Shear Connectors. 

8.9.1 Fatigue Limit State for Stud Connectors. 

8.9.2 Strength Limit State for Stud Connectors. 

8.10 Stiffeners. 

8.10.1 Transverse Intermediate Stiffeners. 

8.10.2 Bearing Stiffeners. 

8.11 Example Problems. 

8.11.1 Noncomposite Rolled Steel Beam Bridge. 

8.11.2 Composite Rolled Steel Beam Bridge. 

8.11.3 Multiple-Span Composite Steel Plate Girder Beam Bridge. 

References. 

Appendix A: Influence Functions for Deck Analysis. 

Appendix B: Metal Reinforcement Information. 

Appendix C: Computer Software for LRFD of Bridges. 

Appendix D: NCHRP 12-33 Project Team. 

Index.

 


我們接受以下的付款方式︰VISA、Mastercard、JCB 信用卡、PayPal、銀行轉帳。